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Diffusion-controlled reactions with a binding site hidden in a channel
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The rate of a diffusion-controlled reaction with a buried binding site is smaller than the rate for the
same site on the surface. We study the slowdown of the reaction rate when the site is hidden in a
pore that connects two bulk media. On the assumption that the pore is cylindrical we derive an
expression for the Laplace transform of the rate coefficient from which we infer the long-time limit
of the reaction rate. This provides information on how the reaction rate depends on the channel
radius, the location of the site, and the diffusion constant in the pore, which is allowed to differ from
that in the bulk. The validity of approximations was checked by simulations that indicated excellent
agreement between the analytical and and numerical results. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1533061#
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I. INTRODUCTION

Diffusion-controlled reactions of solutes with a reacti
site hidden in a protein membrane channel or protein ca
underlie many basic biological processes. A set of w
studied examples is provided by ligand activation of wa
soluble and integral membrane proteins in intra- and ex
cell signal transduction, where structural studies often rev
clefts or pockets for ligand-binding sites.1–3 Noncompetitive
inhibition of ion channels in synaptic transmission is anot
example in which entrance into the pore and diffusion in
pore are essential steps of the inhibition reaction.4 Impor-
tantly, noncompetitive inhibitors that block open ion cha
neels are considered to be promising neuroprotective ag
against glutamate excitoxicity in a number of neurodegen
tive disorders.5–7

Diffusion to a hidden reaction site is able to slow dow
the binding reaction by many orders of magnitude. This
one of the conclusions of a recent single-molecule study
the translocation of antibiotics through a bacterial por
OmpF.8 Experimental results indicate that the on-rate
ampicillin binding to a constellation of charges in the co
striction zone of the OmpF pore is about 1.33104 (M
•s)21. This represents a reduction of several orders of m
nitude in the on-rate as compared to the rate expected f
binding site exposed on the surface. Though many fac
may be responsible for this dramatic reduction, the diffus
step to the reaction site hidden in the center of the chann
a likely candidate.

a!Permanent address: Karpov Institute of Physical Chemistry, 10 Voronts
Pole Street, 103064, Moscow K-64, Russia.
2360021-9606/2003/118(5)/2367/7/$20.00
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In this paper we develop a theory of diffusion-controlle
reactions when a reaction site is hidden in a membrane c
nel. A simple model of such a reaction is one in which it
assumed that the reaction site is located in a cylindrical ch
nel of radiusa, in the geometry shown in Fig. 1. The reactio
will be said to occur when the first particle reaches the re
tive site. Particles diffuse in the bulk and within the chann
with the diffusion constantsDb and Dch, respectively. Ini-
tially the concentration of particles in the bulk is consta
and equal toc, and there are no particles in the channel.
initiate the reaction process the two openings of the chan
are opened att50, permitting the particles to move into th
cylinder.

It has been shown that, to a good approximation, dif
sion in the channel can be described as be
one-dimensional.9–11 It will be assumed, in the framework o
this one-dimensional description, that the reaction site can
modelled as a perfectly absorbing point. The survival pro
ability of the site is the probability that the site has not be
reached by particles entering the channel either from the
or right ~Fig. 1!. Since diffusing particles cannot cross th
site, the survival probability is a product of two surviv
probabilities, found by solving an auxiliary problem. In th
problem a perfectly absorbing site is located at the bottom
a cylinder of radiusa and of lengthL. The study of this
problem is the main focus of the present paper. We derive
analytical expression for the reaction rate as a function oL
anda as well as diffusion constants in the bulk and inside
cylinder. WhenL50 the problem reduces to a well-know
one in which an absorbing disk is placed on a reflecting w
This problem has been analyzed by a number
investigators.12–16

vo
7 © 2003 American Institute of Physics
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The rate constant for a buried reaction site was first c
sidered by Samson and Deutch who studied ligand bindin
a reaction site buried inside an enzyme or protein.17 Using a
sophisticated but approximate analysis they derived an
lytical expression for the rate constant in a spherical geo
etry in which a binding site is located at a specified depth
an otherwise reflecting sphere. In this paper we consid
simpler geometry allowing us to solve the problem by
ementary means. These enable us to find not only the ste
state rate constant but also the time-dependent rate co
cient. The relation between the Samson–Deutch model
the present one is discussed in Sec. IV after we develo
theory for our model in the following section and compa
our theoretical predictions with simulation results in Sec.

II. THEORY

The survival probability,SL(t), i.e., the probability that
no particle has reached the reactive site at the bottom of
cylinder by timet, is given by

SL~ t !5expF2cE
0

t

kL~j!djG , ~2.1!

whereckL(t) is a time-dependent flux of particles throug
the reactive site at timet. The object of our analysis is to
determinekL(t) as a function of the parametersa and L as
well as the two diffusion constantsDb andDch . In the final
section we use Eq.~2.1! to express the survival probability o
the binding site in the channel where the site can be reac
by diffusing particles that enter the channel through eithe
the two ends.

To find kL(t) one has to solve the problem in three d
mensions in the cylinder and in the bulk and match the t

FIG. 1. Schematic diagram of the channel with a binding site. The sit
located at distancesl 1 and l 2 from the channel entrances, as shown.
Downloaded 22 Jan 2003 to 128.231.6.47. Redistribution subject to AI
-
to

a-
-

n
a

-
dy-
ffi-
nd
a

.

he

ed
f

o

solutions at the entrance to the cylindrical pore. This p
gram cannot be carried out due to its mathematical comp
ity. However, an approximate, but quite accurate, techni
has recently been found to handle such problems.9 The re-
sults of that reference show that the three-dimensional
tion inside a cylinder in contact with a bulk can be treated
being one-dimensional diffusion, provided that the prop
radiation boundary condition is imposed at the entrance
the cylinder. Results of extensive simulations using the
curate geometry, i.e., with a three-dimensional cylindri
channel in contact with the bulk were compared to tho
derived on the basis of the one-dimensional approximatio
Refs. 9 and 11. Excellent agreement was found between
theoretically predicted results and those found in simulat
for all values of the ratioL/a that determine the channe
geometry.

Since diffusion in the channel can be described as
dimensional, the particle density at timet, p(x,t), satisfies

]p

]t
5Dch

]2p

]x2
, 0,x,L ~2.2!

subject to the initial conditionp(x,0)50. The existence of a
binding site atx5L is translated into the absorbing bounda
condition p(L,0)50. It has been shown in Ref. 9 that th
point x50, as viewed from the cylinder, can be regarded
a partially absorbing boundary. To write the boundary con
tion at x50 we introduce the flux of particles that enter th
cylinder from the bulk at timet, Jb(t). The boundary condi-
tion can then be expressed as

Dch

]p~x,t !

]x U
x50

5kp~0,t !1Jb~ t !, ~2.3!

where the rate constantk characterizes the efficiency of es
cape from the cylinder of a particle that approaches
boundary, and has been shown to be9

k5
4Db

pa
. ~2.4!

The functionJb(t) in Eq. ~2.3! is the flux of particles im-
pinging on a disk of radiusa on an otherwise planar reflec
ing wall. A boundary condition more accurate than Eq.~2.3!
can be shown to be non-Markovian,9 but reduces to Eq.~2.3!
on time scales larger thana2/Db . At such times,Jb(t) can
be set equal to its stationary value, 4Dbac. In our later
analysis we will neglect details of the kinetics occuring
times of the order ofa2/Db .

The rate coefficient is expressed in terms ofp(x,t) by

kL~ t !52
Dch

c

]p~x,t !

]x U
x5L

. ~2.5!

To calculatekL(t) we consider the behavior of a particle th
enters the cylinder att50 and calculate the flux that escap
through the reactive site atx5L due to this particle. The
motion inside the cylinder is described by a propaga
G(x,tu0) which satisfies the diffusion equation in Eq.~2.2!
together with the boundary conditionG(L,tu0)50. How-
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FIG. 2. Curves illustrating slowdown
of the reaction rate due to hiding of th
binding site in the cylinder. The solid
line is the logarithm of the survival
probability for a site exposed on the
reflecting surface. The remaining line
give similar dependences for the rea
tion site hidden at the bottom of cylin-
ders with different lengthsL. The
curves were obtained by numerical in
version of the Laplace transform

k̂L(s)/s using the expression fork̂L(s)
in Eq. ~2.11!.
n

s
en

ate

rt-

o-

of
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by

ting
ever the initial condition is now changed toG(x,0u0)
5d(x) and the boundary condition in Eq.~2.3! is also
changed to

Dch

]G~x,tu0!

]x U
x50

5kG~0,tu0!. ~2.6!

The flux escaping through the reactive site, denoted byf (t),
is given by

f ~ t !52Dch

]G~x,tu0!

]x U
x5L

. ~2.7!

Then the rate coefficient can be expressed as

kL~ t !54DbaE
0

t

f ~j!dj. ~2.8!

The analysis is best presented in terms of Laplace tra
forms. The Laplace transform ofkL(t) is

k̂L~s!5E
0

`

e2stkL~ t !dt

54Dba
f̂ ~s!

s
5

24DbDcha

s

]Ĝ~x,su0!

]x
U

x5L

.

~2.9!

The equation satisfied byG(x,tu0) can be solved by mean
of Laplace transforms. It is convenient to introduce a dim
sionless combination,s5L2s/Dch . The Laplace transform
of G(x,tu0) is found to be

Ĝ~x,su0!5

sinhF S 12
x

L DAsG
~Dch /L !@As cosh~As!1k sinh~As!#

.

~2.10!
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This leads to the following representation ofk̂L(s):

k̂L~s!5
4Dba

~L2/Dch !AsFAs cosh~As!1
kL

Dch
sinh~As!G .

~2.11!

It follows from this that whenL50 the rate coefficient is
4Dba as in Refs. 12–14. The slow down of the reaction r
due to the fact thatLÞ0 is illustrated in Fig. 2 forDb

5D ch5D. The curves were obtained by numerically inve
ing k̂L(s)/s using the expression fork̂L(s) given in Eq.
~2.11!. The numerical inversion was performed by the pr
gram Scientist~MicroMath Scientific Software, 1995! which
uses two different methods to perform the inversion. Both
these produced the same results.

The long-time limit,kL(`), is found by passing to the
limit s→0 in Eq. ~2.11!. This yields the expression

kL~`!5
4Dba

11
kL

Dch

5
4Dba

11
4DbL

pDcha

~2.12!

which obviously depends both onDb andDch. Initially, the
rate coefficient is equal to zero since no particle is found
the cylinder. The short-time behavior can be determined
passing to the limits→` in Eq. ~2.11!. This leads to the
approximation

kL~ t !'16DbaADch t

pL2
expS 2

L2

4Dch t D . ~2.13!

A solution for kL(t) for all values oft and for arbitrary val-
ues of the parameters can be found by numerically inver
k̂L(s).
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Relaxation of the rate constan
kL(t) to its plateau valuekL(`) when
the binding site is hidden in a long an
narrow cylinder of lengthL. The de-
pendence is calculated from Eq.~2.16!
with t5Dch t/L2.
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When the cylinder is long and narrow, in the sense t
L@aD ch/Db , an approximate solution forkL(t), valid for
all times, can be found. This solution is

kL~ t !'a2A4pDch

t (
n50

`

expF2
~n11/2!2L2

Dch t G . ~2.14!

As might be anticipated thiskL(t) depends only on proper
ties of the cylinder and there is no effect of diffusion in t
bulk on it. In the long-time limit,kL(t) takes the form

kL~`!'pDcha2/L ~2.15!

which is proportional toa2 and not toa as is the case whe
L50. Using the dimensionless timet5Dch t/L2 we can
write

kL~ t !

kL~`!
5

2

Apt
(
n50

`

expF2
~n11/2!2

t G . ~2.16!

A plot of this ratio is shown in Fig. 3.

III. SIMULATION RESULTS

Brownian dynamics simulations were run in a real thre
dimensional geometry to check the accuracy of the the
outlined in the last section. The diffusion constants in
cylinder and in the bulk were set equal in our simulatio
Db5D ch5D. A further discussion of the simulations is t
be found in the Appendix. We found very good agreem
between the theoretically predicted values ofkL(`) and that
obtained by simulation. The relative discrepancy between
theory and simulations was less than 3 percent for all va
of a andL used for simulations. A more detailed set of resu
are shown in the graphs in Figs. 4 and 5.
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Figure 4 is a plot of the ratiokL(`)/4Dba as a function
of L/a, which is compared to the theoretical dependen
given in Eq.~2.12!. This dependence is indicated in Fig. 4 b
the solid line, while the crosses correspond to the simula
results. There is close agreement between the two.

For the dependence ofkL(`) on the radius of the cylin-
der, the theory predicts@cf. Eq. ~2.12!# a transition from the
linear behaviorkL(`)54Dba when L!a to quadratic be-
havior given in Eq.~2.15! for long cylinders,a!L. This
transition is illustrated by the curves shown in the inset
Fig. 5 for cylinders withL50,0.1, and 1. A comparison o
the theoretical prediction and numerical results is also sho
in Fig. 5 for the cylinder withL51 anda50.02, 0.03, 0.04,
and 0.05. Again, there is excellent agreement between th
and the results of simulation.

IV. DISCUSSION

It is interesting to compare our result for the plate
value of the rate constant,kL(`), in Eq. ~2.12! with the rate
constant derived by Samson and Deutch,17 for their model of
diffusion-limited ligand binding to a reaction site buried in
side of an enzyme or protein as shown in Fig. 6. This mo
reduces to ours withD ch5Db5D in the limit R→` at fixed
values of the parametersa andL ~Fig. 6!. It is convenient to
consider 1/kL(`) which can be written as

1

kL~`!
5

1

kdisk
1

L

pa2D
5

1

4aD
1

L

pa2D
, ~4.1!

wherekdisk54aD is the rate constant for a perfectly absor
ing disk on an infinite reflecting plane, derived by Hill,12 and
Berg and Purcell.13
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. The ratio of the plateau value
of the rate coefficient for the binding
site hidden in the cylinder of lengthL,
kL(`), to the rate constant for the
same site exposed on the reflectin
surface, 4Da. The plots are shown as
a function of L/a. The solid curve is
calculated from Eq.~2.12! with Db

5Dch5D. The crosses represen
simulated data.
an
pot
The inverse of the rate constant derived by Samson
Deutch~SD! in Ref. 17 can be written

1

kSD~u0 ,LuR!
5

1

kSD~u0,0uR!

1
L

2pR~R2L !~12cosu0!
~4.2!
Downloaded 22 Jan 2003 to 128.231.6.47. Redistribution subject to AI
din the notation used in Fig. 6. Here,kSD(u0,0uR) is the SD
expression for the rate constant for a circular absorbing s
on the surface of an otherwise reflecting sphere of radiusR.
It is

kSD~u0,0uR!5
2pDR~12cosu0!

h~cosu0!
~4.3!
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FIG. 5. Behavior of the plateau value
of the rate coefficient,kL(`), as a
function of the cylinder radiusa for
different values ofL. The dependence
is linear when the binding site is ex
posed on the reflecting surface. Whe
the site is hidden in the cylinder the
dependence is initially quadratic, be
coming linear when the radius of the
cylinder is larger than the cylinder
length, as shown in the inset. Th
numbers near the curves indicate th
cylinder length. Both the rate constan
and the cylinder length and radius ar
expressed in dimensionless units. Th
curves are calculated from Eq.~2.12!
with Db5Dch51/2 in dimensionless
units. The crosses in the main part o
the figure were obtained from simu
lated data for a cylinder withL51 and
the corresponding theoretical curve
drawn as a solid line.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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in which h(cosu0) is defined by

h~cosu0!5
1

2 F12cosu0

1(
l 51

`
Pl 21~cosu0!2Pl 11~cosu0!

l 11 G , ~4.4!

wherePl(cosu0) is the l th order Legendre polynomial.
WhenR is large anda is fixed so thatu05a/R the rate

constant in Eq.~4.3! can be approximated by the rate co
stant for an absorbing disk on an infinite reflecting pla
derived by Shoup, Lipari, and Szabo.18 They applied the SD
approach to this problem and found

kdisk,SD5paD. ~4.5!

One can find this result from Eqs.~4.3! and~4.4! by making
use of the sum

(
l 51

`
Pl 21~cosu0!2Pl 11~cosu0!

l 11

52H sinS u

2D1cos2S u

2D lnF11sinS u

2D G
2sin2S u

2D F12 lnFsinS u

2D G G J ~4.6!

that can be derived using some relations from Ref. 19.
rate constant in Eq.~4.5! is smaller than the exactkdisk

54aD as must be the case becausekdisk,SD is derived using
an absorbing boundary condition~i.e., requiring the ligand
concentration to vanish! only at one point at the center of th
disk. The exactkdisk , on the other hand, is derived with a
absorbing boundary condition on the entire disk surface.

The second term on the right-hand side of Eq.~4.2! takes
the formL/(pa2D) in the large-R limit and with u05a/R.
This coincides with the second term in Eq.~4.1!. In the limits
just mentioned we have

FIG. 6. A sketch of the model analyzed by Samson and Deutch, consi
of a reflecting sphere of radiusR with a conical channel of lengthL that
leads to the binding site indicated by the thick line. The channel openin
defined by the angleu0 and the arc length is equal toa.
Downloaded 22 Jan 2003 to 128.231.6.47. Redistribution subject to AI
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kSD~u05a/R,LuR!
5

1

kdisk,SD
1

L

pa2D

5
1

paD
1

L

pa2D
. ~4.7!

A comparison of this formula and Eq.~4.1! indicates that the
difference between the two rate constants is due to the
ference betweenk disk,SD and the exact value ofkdisk as de-
rived by Hill,12 and Berg and Purcell.13 This difference mani-
fests itself only for very short cylinders, i.e.,L,a. In the
interesting case of the long cylinder,L@a, both approaches
lead to the steady-state rate constantpa2D/L.

Our analysis has the advantage of leading not only to
long-time plateau value of the rate coefficient, but also to
Laplace transform of the time-dependent rate coefficient.
were able to invert this transform in the most interesting c
of a long, narrow cylinder, allowing us to give the explic
formula for kL (t) in Eq. ~2.14!. This is possible because w
have analyzed a simpler geometry than in the SD model

V. A CONCLUDING REMARK

Two main results of the present paper are the express
for the Laplace transform of the rate coefficient given in E
~2.11! and for the plateau valuekL(`) given in Eq.~2.12!. It
allows one to analyze the dependence of the rate cons
and the associated survival probability on the parametea
and L of the cylinder, and the diffusion constantsDch and
Db . When the form ofSL(t) is known the survival probabil-
ity of the perfectly binding site in the channel, in the geom
etry of Fig. 1, can be expressed as

Sl 1
~ t !Sl 2

~ t !5expH 2cE
0

t

@kl 1
~j!1kl 2

~j!#djJ . ~5.1!

This representation shows how the survival probability d
pends on the location of the site inside of the channel.
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APPENDIX: FURTHER DETAILS
OF THE SIMULATIONS

The geometric configuration used in our simulations
shown in Fig. 7. A circular cylinder of lengthL and radius
equal toa is attached to a wall of a unit cube whose sides
perfectly reflecting as are the sides of the cylinder, except
its dead end, which is absorbing. Reflections from the w
were handled by returning the diffusing particle to the po
tion it had just prior to hitting the wall. A comparison o
results obtained by this simplified method, which save
considerable amount of computer time, and those by a m
accurate one were only slightly different.

In the simulations the cylinder length varied from 0 to
while the radius of the cylinder varied from 0.02 to 0.05.
given particle’s motion both in the box and within the cylin
der was determined by sampling from a Gaussian proces
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j is a three-dimensional Gaussian random variable with z
mean and variance equal to 1/2, then the displacement
single step is set equal to (Dt)1/2j. We used the valuesDt
51026 in the cylinder and in the thin slab of thickness 0.1
contact with the wall containing the cylinder~cf. Fig. 7! and
Dt51024 in the rest of the cube.

The rate coefficient was calculated as the inverse of
average time for a particle to be absorbed. Most of the res
were obtained using 104 random walkers whose initial pos
tions were uniformly distributed throughout the cube. R

FIG. 7. Schematic diagram of the system configuration used in the sim
tions, consisting of a reflecting cube whose sides have a length equal
with a cylinder attached at the center of one of the sides. The striped
end of the cylinder is an absorbing surface while the circular side of
cylinder is reflecting. Also shown is the thin slab contacting the side c
taining the cylinder. Within this slab the time step is shorter than in
remainder of the cube.
Downloaded 22 Jan 2003 to 128.231.6.47. Redistribution subject to AI
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sults for cylinders withL52 –5 were obtained using 103

random walkers due to the very long running time for
single random walker.
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